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Abstract— Estimating the entropy of a Gaussian distribution
from samples drawn from the distribution is a difficult problem
when the number of samples is smaller than the number of
dimensions. A new Bayesian entropy estimator is proposed
using an inverted Wishart distribution and a data-dependent
prior that handles the small-sample case. Experiments for six
different cases show that the proposed estimator provides good
performance for the small-sample case compared to the standard
nearest-neighbor entropy estimator. Additionally, it is shown that
the Bayesian estimate formed by taking the expected entropy
minimizes expected Bregman divergence.

I. INTRODUCTION

Entropy is a useful description of the predictability of a
distribution, and has use in many applications of coding,
machine learning, signal processing, communications, and
chemistry [1]–[5]. In practice, many continuous generating
distributions are modeled as Gaussian distributions. One rea-
son for this is the central limit theorem, another reason is
because the Gaussian is the maximum entropy distribution
given an empirical mean and covariance, and as such is a least
assumptive model. For the multivariate Gaussian distribution,
the entropy goes as the log determinant of the covariance;
specifically, the differential entropy of a d-dimensional random
vector X drawn from the Gaussian N (µ,Σ) is

h(X) =
∫
N (x) lnN (x)dx =

d

2
+
d ln(2π)

2
+

ln |Σ|
2

. (1)

In this paper we consider the practical problem of estimating
the entropy of a generating normal distribution N given
samples x1, x2, . . . , xn that are assumed to be realizations
of random vectors X1, X2, . . . , Xn drawn iid from N (µ,Σ).
In particular, we focus on the difficult limited-data case that
n ≤ d, which occurs often in practice with high-dimensional
data.

One approach to estimating h(X) is to first estimate the
Gaussian distribution, for example with maximum likelihood
(ML) estimates of µ and Σ, and then plug-in the covariance
estimate to (1) [6]. Such estimates are usually infeasible when
n ≤ d. The ML estimate is also negatively biased so that
it underestimates the entropy on average [5]. We believe it is
more effective and will create fewer numerical problems if one
directly estimates a single value for the entropy, rather than
first estimating the entire covariance matrix in order to produce

the scalar entropy estimate. To this end, we propose a data-
dependent Bayesian estimate using an inverted Wishart prior.
The choice of prior in Bayesian estimation can dramatically
change the results, but there is little practical guidance for
choosing priors. The main contributions of this work are
showing that the inverted Wishart prior enables estimates for
n ≤ d, and that using a rough data-dependent estimate as a
parameter to the inverted Wishart prior yields a more robust
estimator than ignoring the data when creating the prior.

II. RELATED WORK

First we review related work in parametric entropy estima-
tion, then in nonparametric estimation.

Ahmed and Gokhale investigated uniformly minimum vari-
ance unbiased (UMVU) entropy estimators for parametric dis-
tributions [6]. They showed that the UMVU entropy estimate
for the Gaussian is,

ĥUMVU =
d lnπ

2
+

ln |S|
2
− 1

2

d∑
i=1

ψ

(
n+ 1− i

2

)
, (2)

where S =
∑n
i=1(xi−x̄)(xi−x̄)T , and the digamma function

is defined ψ(z) = d
dz ln Γ(z), where Γ is the standard gamma

function.
Bayesian entropy estimation for the multivariate normal was

first proposed in 2005 by Misra et al. [5]. They form an entropy
estimate by substituting l̂n |Σ| for ln |Σ| in (1) where l̂n |Σ|
minimizes the squared-error risk of the entropy estimate. That
is, l̂n |Σ| solves,

arg min
δ∈R

Eµ,Σ

[
(δ − ln |Σ|)2

]
, (3)

where here Σ denotes a random covariance matrix and µ a
random vector, and the expectation is taken with respect to the
posterior. We will denote by µ̃ and Σ̃ respectively realizations
of the random µ and Σ. Misra et al. consider different priors
with support over the set of symmetric positive definite Σ̃.
They show that given the prior p(µ̃, Σ̃) = 1

|Σ̃|
d+1
2

, the solution

to (3) yields the Bayesian entropy estimate

ĥBayesian =
d lnπ

2
+

ln |S|
2
− 1

2

d∑
i=1

ψ

(
n− i

2

)
. (4)



For discrete random variables, a Bayesian approach that uses
binning for estimating functionals such as entropy was pro-
posed the same year as Misra et al.’s work [7].

It is interesting to note that the estimates ĥUMVU and
ĥBayesian were derived from different perspectives, but differ
only slightly in the digamma argument. Like ĥUMVU, Misra et
al. show that ĥBayesian is an unbiased entropy estimate. They
also show that ĥBayesian is dominated by a Stein-type estimator,

ĥStein = ln |S + nx̄x̄T | − c1,

where c1 is a function of d and n. Further, they also show that
the estimate ĥBayesian is dominated by a Brewster-Zidek-type
estimator ĥBZ ,

ĥBZ = ln |S + nx̄x̄T | − c2.

where c2 is a function of |S| and x̄x̄T that requires calculating
the ratio of two definite integrals, stated in full in (4.3) of [5].
Misra et al. found that on simulated numerical experiments
their Stein-type and Brewster-Zidek-type estimators achieved
roughly only 6% improvement over the simpler Bayesian
estimate ĥBayesian, and thus they recommend using the com-
putationally much simpler ĥBayesian in applications.

There are two practical problems with the previously pro-
posed parametric estimators. First, the estimates given by (2),
(4), and the other proposed Misra et al. estimators require
calculating the determinant of S or S + x̄x̄T , which can
be numerically infeasible if there are few samples. Second,
the Bayesian estimate ĥBayesian uses the digamma function of
n − d which requires n > d samples so that the digamma
has a non-negative argument, and similarly ĥUMVU uses the
digamma of n− d+ 1, which requires n ≥ d samples. Thus,
although the knowledge that one is estimating the entropy of
a Gaussian should be of use, for the n ≤ d case one must turn
to nonparametric entropy estimators.

A thorough review of work in nonparametric entropy esti-
mation up to 1997 was written by Beirlant et al. [4], including
density estimation approaches, sample-spacing approaches,
and nearest-neighbor estimators. Recently, Nilsson and Kleijn
show that high-rate quantization approximations of Zador and
Gray can be used to estimate Renyi entropy, and that the
limiting case of Shannon entropy produces a nearest-neighbor
estimate that depends on the number of quantization cells [8].
The special case of their nearest-neighbor estimate that best
validates the high-rate quantization assumptions is when the
number of quantization cells is as large as possible. They show
that this special case produces the nearest-neighbor differential
entropy estimator originally proposed by Kozachenko and
Leonenko in 1987 [9]:

ĥNN =
d

n

n∑
i=1

ln ‖xi − xi,1‖2 + ln(n− 1) + γ + lnVd (5)

where xi,1 is xi’s nearest neighbor in the sample set, γ is
the Euler-Mascheroni constant, and Vd is the volume of the
d-dimensional hypersphere with radius 1: Vd = πd/2

Γ(1+d/2) . A
problem with this approach is that in practice data samples

may not be in general position; for example, image pixel data
are usually quantized to 8 bits or 10 bits. Thus, it can happen in
practice that two samples have the exact same measured value
and thus ‖xn − xn,1‖ is zero and thus the entropy estimate
could be ill-defined. Though there are various fixes, such as
pre-dithering the quantized data, it is not clear what effect
these fixes could have on the estimated entropy.

A different approach is taken by Costa and Hero [2], [3],
[10]; they use the Beardwood Halton Hammersley result that
the function of the length of a minimum spanning graph
converges to the Renyi entropy [11] to form an estimator based
on the empirical length of a minimum spanning tree of data.
Unfortunately, how to use this approach to estimate Shannon
entropy remains an open question.

III. BAYESIAN ESTIMATE WITH INVERTED WISHART
PRIOR

We propose to estimate the entropy as, EN [h(N)], where
N is a random Gaussian, and the prior p(N) is an inverted
Wishart distribution with scale parameter q and parameter
matrix B. We use a Fisher information metric to define a
measure over the Riemannian manifold formed by the set of
Gaussian distributions. These choices for prior and measure
are very similar to the choices that we found worked very
well for Bayesian quadratic discriminant analysis [12], and
further details on this framework can be found in that work.

The resulting proposed inverted Wishart Bayesian entropy
estimate is

ĥiWBayesian =
d lnπ

2
+

ln |S +B|
2

−1
2

d∑
i=1

ψ

(
n+ q + 1− i

2

)
. (6)

Proof: To show that (6) is EN [h(N)], we will need to integrate∫
Σ̃>0

ln |Σ̃| exp[−tr(Σ̃−1V)]
|Σ̃| q2

dΣ̃ (7)

≡ EΣ[ln |Σ|] |V |
q−d−1

2

Γd( q−d−1
2 )

(8)

where Σ is a random covariance matrix drawn from an inverted
Wishart distribution with scale parameter q and matrix param-
eter 2V . Recall that for any matrix 2V , |Σ−1|/|(2V )−1| ∼∏d
i=1 χ

2
q−d−i [13, Corollary 7.3], where χ2 denotes the chi-

squared random variable. Take the natural log of both sides
and use the fact that |A−1| = |A|−1 to show that ln |Σ| ∼
ln |2V | −

∑d
i=1 lnχ2

q−d−i. Then after taking EΣ[ln |Σ|], (8)
becomes

Γd( q−d−1
2 )

|V | q−d−1
2

(
ln |2V | −

d∑
i=1

E
[
lnχ2

q−d−i
])

=
Γd( q−d−1

2 )

|V | q−d−1
2

(
ln |V | −

d∑
i=1

ψ

(
q − d− i

2

))
, (9)

where the second line uses the property of the χ2 distribution
that E[lnχ2

q] = ln 2 + ψ
(
q
2

)
.



Now we will use the above integral identity to find
ĥiWBayesian = EN [h(N)]. Solving for EN [h(N)] only requires
computing

EN [ln |Σ|] =
∫

Σ̃

ln |Σ̃| p(Σ̃|x1, x2, . . . , xn)
dΣ̃

|Σ̃| d+2
2

,

where the term 1/|Σ̃|(d+2)/2 results from the Fisher in-
formation metric which converts the integral EN [h(N)]
from an integral over the statistical manifold of Gaussians
to an integral over covariance matrices, and the posterior
p(Σ̃|x1, x2, . . . , xn) is given in [12] such that EN [ln |Σ|]

=

(
|S +B|

n+q
2

2
(n+q)d

2 Γd(n+q
2 )

)

·

(∫
Σ̃>0

ln |Σ̃| exp[− 1
2 tr(Σ̃−1(S + B))]

|Σ̃|n+q+d+1
2

dΣ̃

)

=

 |S +B|
n+q

2

2
(n+q)d

2 Γd(n+q
2 )

Γd(n+q
2 )∣∣S+B

2

∣∣n+q
2


·

(
ln
∣∣∣∣S +B

2

∣∣∣∣− d∑
i=1

ψ

(
n+ q + 1− i

2

))
(10)

= ln |S +B| − d ln 2−
d∑
i=1

ψ

(
n+ q + 1− i

2

)
,

where equation (10) follows by using the fact that (7) is given
by (9) for V = (S +B)/2. Then replacing ln |Σ| in (1) with
the computed EN [ln |Σ|] produces the estimator (6).

A. Choice of Prior Parameters q and B

The inverted Wishart distribution is an unimodal prior that
gives maximum a priori probability to Gaussians with Σ =
B/q. Previous work using the inverted Wishart for Bayesian
estimation of Gaussians has used the identity matrix for B
[14], or a scaled identity where the scale factor was learned by
cross-validation given labeled training data (for classification)
[15]. Using B = I sets the maximum of the prior at I/q,
regardless of whether the data are measured in nanometers
or trillions of dollars. To a rough approximation, the prior
regularizes the likelihood towards the prior maximum at B/q,
and thus the bias added by using the prior with B/q = I can
be ill-suited to the problem. Instead, setting B/q to be a rough
estimate of the covariance can add bias that is more appropriate
for the problem. For example, we have shown that using
B = qdiag(S) can work well when estimating Gaussians for
classification by Bayesian quadratic discriminant analysis [12].
For entropy estimation, B = qdiag(S)/n works excellently if
the true covariance is diagonal, but can perform poorly if the
true covariance is a full covariance because the determinant
of B = diag(S)/n can be significantly higher than the
determinant of S, biasing the entropy estimate to be too high.
An optimal choice of B when there is no prior information
about S remains an open question; we propose using

B = q
ln (diag(S) + 1)

n
, (11)

for n ≤ d, and for n > d we let B be the d × d matrix of
zeros.

The scalar prior parameter q changes the peaked-ness of the
inverted Wishart prior, with higher q corresponding to a more
peaked prior, and thus higher bias. For the entropy problem
there is only one number to estimate, and thus we believe that
as little bias as possible should be used. To achieve this, we
set q = min(d − n,−1). Letting q = −1 when n > d and
using the zero matrix for B in this range makes ĥiWBayesian

equivalent to ĥBayesian when n > d.

B. Bregman Divergences and Bayesian Estimation

Misra et al. showed that EΣ[| ln Σ|] minimizes the squared
error loss as stated in (3). Here we show that EN [h(N)]
minimizes any Bregman divergence loss. The Bregman
divergences are a class of loss functions that include squared
error and relative entropy [16], [17].

Lemma: The mean entropy with respect to uncertainty in the
generating distribution EN [h(N)] solves

arg min
ĥ∈R

EN

[
dφ(h(N), ĥ)

]
,

where dφ(a, b) = φ(a) − φ(b) − φ(b)′(a − b) for a, b,∈ R is
any Bregman divergence with strictly convex φ.

Proof: Set the first derivative to zero:

0 =
d

dĥ
EN

[
φ(h(N))− φ(ĥ)− d

dĥ
φ(ĥ)(h(N)− ĥ)

]
= −EN

[(
d2

dĥ2
φ(ĥ)

)(
h(N)− ĥ

)]
.

Because φ is strictly convex, d2

dĥ2φ(ĥ) > 0, and thus it must
be that EN [h(N) − ĥ] = 0, and thus by linearity that the
minimizer is ĥ = EN [h(N)].

IV. EXPERIMENTS

We compare the proposed inverted Wishart Bayesian es-
timator ĥiWBayesian with the data-dependent given in (11) to
ĥiWBayesian with B = I , to the nearest-neighbor estimator
given in (5), to the maximum likelihood estimator formed by
replacing µ and Σ in (1) by maximum likelihood estimates
of µ and Σ, to ĥUMVU given in (2), and to ĥBayesian given
in (4). All results were computed with Matlab 7.0. For the
digamma function and Euler-Mascheroni constant we used the
corresponding built-in Matlab commands.

Simulations were run for a fixed dimension of d = 20
with varying number of iid samples n drawn from random
Gaussians. For n ≤ d we it was not possible to calculate
the digamma functions for ĥBayesian and ĥUMVU or |Σ|, thus
ĥBayesian, ĥUMVU, and the maximum likelihood estimates are
only reported for n > d. The nearest-neighbor estimate and
the inverted Wishart Bayesian estimates are compared down
to n = 2 samples.

In the first simulation, each generating Gaussian had a
diagonal covariance matrix with elements drawn iid from the
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Fig. 1. Comparison of entropy estimators averaged over 10,000 iid runs of each simulation.



uniform distribution on (0, α]. The results are shown in Fig.
1 (left) for α = 10 (top), for α = 1 (middle), and for α = .1
(bottom). Fig. 2 shows the average eigenvalues.

In the second simulation, each generating Gaussian had
a full covariance matrix RTR, where each of the 20 × 20
elements of R was drawn iid from a normal distribution
N (0, α2). The results are shown in Fig. 1 (right) for α = 10
(top), for α = 1 (middle), and for α = .1 (bottom). Fig. 2
shows the average eigenvalues.

For each n and each of the six cases, the simulation was run
10,000 times and the results averaged to produce the plots.
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Fig. 2. Average log ranked eigenvalues for the first simulation (top) and
second simulation (bottom).

For n > d the three Bayesian estimates are equivalent and
perform consistently better than ĥUMV U , the maximum likeli-
hood estimate, or the nearest-neighbor estimate. The maximum
likelihood estimator is always the worst parametric estimator.
Throughout the simulations, the nearest-neighbor estimate
makes the least use of additional samples, improving its
estimate only slowly. This is reasonable because the nearest-

neighbor estimator does not explicitly use the information that
the true distribution is Gaussian.

Given very few samples the nearest-neighbor estimator is
the best performer for two of the full covariance cases. This
suggests that different prior parameter settings could be more
effective when there are few samples, perhaps a prior that adds
more bias.

As expected, in general the data-dependent ĥiWBayesian

achieves lower error than ĥiWBayesian with B = I , sometimes
significantly better, as in the case of true diagonal covariance
with elements drawn from U(0, .1], shown in Fig. 1 (bottom).

V. CONCLUSIONS

A data-dependent approach to Bayesian entropy estimation
was given that minimizes expected Bregman divergence and
performs consistently well compared to other possible estima-
tors for the high-dimensional/limited data case that n ≤ d.
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